• Users Online: 206
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 11  |  Issue : 4  |  Page : 161-166

DNA damage and survival in bystander human intestinal cells treated with conditioned medium from tritium-labeled cells


1 Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
2 Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai, Maharashtra, India

Correspondence Address:
Dr. Badri Narain Pandey
Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_61_20

Rights and Permissions

Background: Tritium exposure could be one of the radiation hazards in case of accidental exposure with intestine as one of the major target organs. In the cells, low-energy beta emitted from tritium would traverse a very short distance (a few microns). Hence, the intestinal epithelial cells with nuclear localization of tritium would exert its radiobiological effect also through bystander mechanism. In the present study, the effect of conditioned medium obtained from tritiated thymidine-labeled human normal intestinal epithelial (INT407) cells was studied on respective bystander cells in terms of magnitude of survival and induction of DNA damage. Materials and Methods: The survival and proliferation of bystander INT407 cells treated with control/irradiated conditioned medium were studied using clonogenic and 5-bromo-2-deoxyuridine (BrdU)-labeling assays. The magnitude of DNA double-strand break was measured by immunofluorescence of η-H2AX by confocal microscopy. Intracellular nitric oxide (NO) in these cells was measured using 4,5-diaminofluorescein diacetate fluorescent dye. Results: Bystander cells treated with conditioned medium from tritiated thymidine-labeled cells showed increased clonogenic survival and BrdU labeling. Cells labeled with tritiated thymidine showed attenuation of η-H2AX foci at longer period (24 and 48 h) of labeling than at 15 h. Moreover, the bystander cells treated with irradiated conditioned medium showed a higher magnitude of η-H2AX foci at 24 h. However, compared to 24 h, 48-h treatment of irradiated conditioned medium resulted in a decrease in η-H2AX foci in the bystander cells. Increased level of intracellular NO was observed in the bystander cells treated with irradiated conditioned medium. Conclusions: Bystander cells treated with conditioned medium obtained from tritiated thymidine-labeled cells showed increased clonogenic survival and proliferation, which was correlated with an increase in DNA double-strand break and NO production in these cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed66    
    Printed2    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal