• Users Online: 369
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 11  |  Issue : 2  |  Page : 45-51

Near-infrared-responsive silver-capped magnetic nanoclusters for cancer therapy

Institute of Nano Science and Technology, Habitat Centre, Mohali, Punjab, India

Correspondence Address:
Dr. Deepika Sharma
Institute of Nano Science and Technology, Habitat Centre, Mohali, Punjab
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jrcr.jrcr_19_20

Rights and Permissions

Aim: Near-infrared (NIR)-based photothermal therapy (PTT) has been proposed as a prospective adjuvant to traditional chemotherapy. The present work aims to study the impact of silver-coated magnetic nanoparticles as a PTT agent against multiple cancer cell lines. Materials and Methods: Silver-coated magnetic nanoclusters (Ag-MNCs) were synthesized by a modified method and characterized using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet–visible absorption spectra. Its effect as an agent for NIR-based PTT was assessed on four different human cell lines, namely glioblastoma cell line U-87 MG, osteosarcoma MG-63, lung carcinoma A549, and triple-negative breast cancer cell line MDA-MB-231 by irradiation with 750 nm NIR laser for 10 min. Cellular damage was assessed in terms of MTT and cell cycle analysis and visualized by confocal microscopy. Results: The Ag-MNCs were successfully generated and exhibited excellent hyperthermic rise when exposed to NIR laser. A reduction of more than 60% of the cells was observed in the MTT assay. Confocal microscopy also confirmed significant nuclear damage to cells exposed to PTT in the presence of Ag-MNCs. Conclusion: Our results confirm that the Ag-MNCs have an excellent hyperthermic profile and as the test results indicate that it can be utilized as an agent for NIR-based PTT against various types of cancer cells.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded120    
    Comments [Add]    

Recommend this journal