• Users Online: 261
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 4  |  Page : 132-146

Acute radiation syndrome: An update on biomarkers for radiation injury


1 Department of Pharmacology and Molecular Therapeutics, Division of Radioprotectants, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences; Department of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
2 Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA

Correspondence Address:
Vijay K Singh
Department of Pharmacology and Molecular Therapeutics, Division of Radioprotectants, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences; Department of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_26_18

Rights and Permissions

The possible detonation of a radiological dispersal device or improvised nuclear device in a metropolitan city, or the accidental exposures to a radiation source, nuclear accidents, or the all-to-often threats of radiological/nuclear terrorism have led to the urgent need to develop essential analytic tools to assess such radiation exposures, especially radiation doses to exposed individuals. This exposure-assessing work using biological samples, and discipline, is known as biodosimetry. As of late, this field has progressed significantly as it has made use of the advances within newer areas of biologic analytics, namely omics (genomics, proteomics, metabolomics, and transcriptomics), lymphocyte kinetics, optically stimulated luminescence, and electron paramagnetic resonance technology in addition to conventional cytogenetic techniques. The use of automated high throughput platforms and the planning for laboratory surge capacity during the time of need are the latest developments in the field of biomarkers for biodosimetry. Such biomarkers are also needed for radiation exposure/dose conversion estimates that are essential for the development and application of radiation countermeasures, from animals to humans and that are currently being developed following the US Food and Drug Administration Animal Rule. Here, we present and discuss the current status of various biomarkers for assessing radiation dose after radiation exposure. It is anticipated that with the advent of improved biomarkers and associated biomarker platforms for the acute radiation syndrome, exposed victims can be more efficiently triaged and appropriately treated than is currently allowable. The latest advances in the field, and identify the areas where improvement is needed are also listed and discussed.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed96    
    Printed3    
    Emailed0    
    PDF Downloaded31    
    Comments [Add]    

Recommend this journal