TECHNICAL REPORT |
|
Year : 2017 | Volume
: 8
| Issue : 4 | Page : 180-185 |
|
Technical note on cytokinesis-arrested binucleated cell and micronucleus assay
Karthik Kanagaraj1, Venkateswarlu Raavi1, Shangamithra Visweswaran1, Tamizh Gnanasekaran Selvan2, Shanmugapriya Dhanashekaran1, Venkatachalam Perumal1
1 Department of Human Genetics, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India 2 PROCyTOX Commission for Atomic Energy and alternative Energies (CEA), Fontenay-aux-Roses and Paris-Saclay University, Fontenay-aux-Roses Cedex, France
Correspondence Address:
Dr. Venkatachalam Perumal Department of Human Genetics, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/jrcr.jrcr_40_17
|
|
Conventionally, many biomarkers are being in use as a measure to genotoxicity in occupational exposure to chemicals, pesticides, radiation, and drug screening. Of which, the micronucleus assay is a preferred choice for many of those applications owing to its simplicity and rapidity. The assay methodology has evolved in cell preparations, staining, and scoring methods: from quantifying the DNA damage in mononucleated cells and binucleated cells; solid (Giemsa) and fluorescence staining (propidium iodide/DAPI); and manual and automated microscopy scoring and flow cytometry. Despite the advantages, preparation of cells with good morphology to interpret DNA damage from a different type of cells remains a challenge in particular for laboratory being the processes of developing the assay. Therefore, the aim of the present report was to explain the micronuclei (MN) assay and means to overcome the troubleshoot for reliable outcome measure using cytokinesis-arrested micronucleus (CBMN) assay from suspension and adherent cultures.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|