• Users Online: 327
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 4  |  Page : 103-111

Bystander response triggered by doxorubicin-killed dead cells contributes to acquire drug resistance but increasing radiosensitivity In vitro


1 Department of Life Sciences, University of Mumbai; Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Mumbai, Maharashtra, India
2 Department of Life Sciences, University of Mumbai, Mumbai, Maharashtra, India
3 Department of Life Sciences, University of Mumbai, Mumbai, Maharashtra; Division of Life Sciences, Research Center, Nehru Gram Bharti University, Allahabad, UP; Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Correspondence Address:
Kaushala Prasad Mishra
Department of Life Sciences, University of Mumbai, Mumbai, Maharashtra; Division of Life Sciences, Research Center, Nehru Gram Bharti University, Allahabad, UP; Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_7_17

Rights and Permissions

Introduction: A bystander effect typically refers to the death, altered growth or damage of cells that have not directly received chemotherapy or irradiation. Chemotherapeutic drugs like doxorubicin cause a drastic increase in the number of dead cells more towards the periphery and low towards the centre of the tumor prompting us to test for the existence of a bystander effect in view of the tumor microenvironment. Materials and Methods: HeLa cervical cancer cells were acutely exposed to doxorubicin to trigger cell death. Bystander HeLa cells in varying amounts were co cultured with fix amount of dead cells. The surviving mutant clones were isolated by serial culturing and checked for morphology, growth pattern and resistance to doxorubicin or radiation. Results: Co-culture results showed, growth arrest, SA-γ-galactosidase activity, an enlarged cell size, collectively indicating a premature senescent state. Up regulation of p53 and γH2AX indicated a DNA damage response pathway. Co-culturing of a fixed number of dead cells with increasing number of bystander cells showed highest number of clones formed in least number of bystander cells. The individual clones obtained were morphologically altered, reduced proliferation and resistant to doxorubicin. Conversely, clones were sensitive to γ radiation compared to control HeLa cells. Conclusion: The results suggest that dead cells conferred significant resistance towards drug but not radiation in cloned bystander tumor cells. This point to possible mechanism of drug resistance in vitro, which might explain the success of radiation therapy and cause of frequent tumor recurrence observed in patients undergoing chemotherapy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1269    
    Printed100    
    Emailed0    
    PDF Downloaded108    
    Comments [Add]    
    Cited by others 2    

Recommend this journal