• Users Online: 197
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 2  |  Page : 50-56

Assessment of radiological risk parameters associated with some selected rivers around oil mineral producing sites in Abia state, Nigeria due to gross alpha and beta radiations


Department of Physics, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria

Correspondence Address:
Paschal Ikenna Enyinna
Department of Physics, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions

Context: The study of gross alpha and beta radiation in environmental components and water bodies in particular is very crucial to the environmental, radiation and medical Physicist as this helps to promote good water quality and environmental hygiene. Aim: This research work understudied the radiological risk parameters due to gross alpha and beta radiations associated with three selected rivers around crude oil production sites in Abia State, Nigeria. Materials and Methods: Gross alpha and beta activities were computed for the three rivers based on analytical measurements carried out using a well-calibrated IN-20 model gas-flow proportional counter. Radiological risk parameters were computed from the activity concentrations which included; annual effective dose equivalent of radiation from ingested water (AEDE), annual gonadal dose equivalent (AGDE), and excess lifetime cancer risk (ELCR). Results: The mean of the total AEDE due to the sum of alpha and beta radiations for the three rivers are 0.868 ± 0.221 mSv/y, 1.008 ± 0.156 mSv/y, and 0.917 ± 0.214 mSv/y; and are above the World Health Organization (WHO) permissible limit of 0.1 mSv/y. The mean of the total AGDE is 4.048 ± 1.063 mSv/y, 4.756 ± 0.739 mSv/y, and 4.295 ± 1.026 mSv/y; and are above the world average limit of 0.3 mSv/y. The mean of the total ELCR are (3.038 ± 0.774) × 10−3 , (3.529 ± 0.547) × 10−3 , and (3.210 ± 0.748) × 10−3 , and are above the world average limit of 0.29 × 10−3 . Conclusion: Most values of ELCR computed in this work are >6.0 × 10−4 estimated to be the risk of fatal and weighted nonfatal health conditions over a lifetime (70 years) derived from the radiation dose of 0.1 mSv/y (WHO permissible limit for drinking water). Drinking water from these surveyed sources could impact negatively on the end users.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1520    
    Printed75    
    Emailed0    
    PDF Downloaded103    
    Comments [Add]    

Recommend this journal