• Users Online: 37
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 28-32

Evaluation of cyclophosphamide-induced genotoxicity and cytotoxicity in cultured human lymphocytes


1 Department of Research, Bhopal Memorial Hospital and Research Centre (BMHRC); Department of Molecular Biology and Genetics, ICMR-National Institute for Research in Environmental Health, Bhopal, India
2 Department of Biotechnology, Barkatullah University, Bhopal, India
3 Department of Biotechnology, St. Aloysius College, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
4 Department of Molecular Biology and Genetics, ICMR-National Institute for Research in Environmental Health, Bhopal, India

Correspondence Address:
Ravindra M Samarth
Department of Research, Bhopal Memorial Hospital and Research Centre (BMHRC); Department of Molecular Biology and Genetics, ICMR-National Institute for Research in Environmental Health, Bhopal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_1_18

Rights and Permissions

Aim: The present study was aimed to examine and evaluate the genotoxicity and cytotoxicity induced by different doses of cyclophosphamide (CP) in normal healthy cultured human peripheral blood lymphocytes. Materials and Methods: Genotoxicity and cytotoxicity was evaluated through mitotic index (MI), chromosomal aberrations, micronuclei frequency, and colony formation assay (plating efficiency [PE] and survival fraction), respectively. Results: It has been observed that CP (1, 2.5, and 5 μg/ml)) induced a dose-dependent increase in chromosomal aberrations and micronuclei frequencies in cultured human peripheral blood lymphocyte as compared to normal. A significant increase was observed in the percentage of aberrant cells and dicentrics/exchanges at 1 and 2.5 μg/ml CP and aberrant cells, breaks, fragments, and dicentrics/exchanges at 5/μg/ml CP. A dose-dependent decrease in values of MI and nuclear division index was also observed in CP-treated group. The frequency of micronuclei in binucleated cells showed a dose-dependent increase. In colony formation assay, PE and surviving fraction values showed significant (P < 0.001) and dose-dependent decrease in the CP treatment groups. Conclusion: The results of present study suggest that CP has genotoxic and cytotoxic effect on cultured human lymphocytes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed337    
    Printed26    
    Emailed0    
    PDF Downloaded68    
    Comments [Add]    

Recommend this journal