• Users Online: 198
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 3  |  Page : 123-134

Transgenerational effects of radiation on cancer and other disorders in mice and humans


1 Nomura Project, National Institutes of Biomedical Innovation, Health and Nutrition; Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
2 Children's Center of Antiradiation Protection, Research Institute for Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russian Federation
3 Nomura Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka University, Osaka, Japan

Correspondence Address:
Taisei Nomura
Nomura Project, National Institutes of Biomedical Innovation, Health and Nutrition; Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka
Japan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_30_17

Get Permissions

Parental exposure of mice to radiation and chemicals causes a variety of adverse effects in the progeny, and the tumor-susceptibility phenotype is transmissible beyond the first postradiation generation. The induced rates of tumors were 100-fold higher than those known for mouse specific locus mutations. There were clear strain differences in the types of naturally-occurring and induced tumors and most of the latter were malignant. Another important finding was that germ-line exposure elicited very weak tumorigenic responses, but caused persistent hypersensitivity in the offspring for the subsequent development of cancer by the postnatal environment. Various disorders were induced in the offspring of mice exposed to radiation. Microsatellite mutations increase dose-dependently and accumulated for 58 generations in the offspring of male parental mice exposed to single dose of X-rays. Changes in gene expression also transmitted to further generations. Radiation-induced genomic instability in germ cells may enhance cancer and other disorders in next generation. In humans, a higher risk of leukemia and birth defects has been reported in the children of fathers who had been exposed to radionuclides in the nuclear reprocessing plants and to diagnostic radiation. These findings have not been supported in the children of atomic bomb survivors in Hiroshima and Nagasaki, who were exposed to higher doses of atomic radiation. However, long-term monitoring of children by Russian Federation Children's Center of Antiradiation Protection after Chernobyl accident shows higher prevalence of malignant neoplasm, mostly childhood cancer, malformation, and other disorders in the children of residents exposed to contaminated radionuclides (>556 kBq/m2). Persistent accumulation of genomic instability may cause various disorders in a further generation in human. This view will gain support from our mouse experiments, because the induced rate of solid tumors in the offspring of mice exposed to radiation is much higher than that of leukemia.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed150    
    Printed2    
    Emailed0    
    PDF Downloaded34    
    Comments [Add]    

Recommend this journal